4 research outputs found

    Smart Table Based on Metasurface for Wireless Power Transfer

    Full text link
    Metasurfaces have been investigated and its numerous exotic functionalities and the potentials to arbitrarily control of the electromagnetic fields have been extensively explored. However, only limited types of metasurface have finally entered into real products. Here, we introduce a concept of a metasurface-based smart table for wirelessly charging portable devices and report its first prototype. The proposed metasurface can efficiently transform evanescent fields into propagating waves which significantly improves the near field coupling to charge a receiving device arbitrarily placed on its surface wirelessly through magnetic resonance coupling. In this way, power transfer efficiency of 80%\% is experimentally obtained when the receiver is placed at any distances from the transmitter. The proposed concept enables a variety of important applications in the fields of consumer electronics, electric automobiles, implanted medical devices, etc. The further developed metasurface-based smart table may serve as an ultimate 2-dimensional platform and support charging multiple receivers.Comment: 8 pages, 7 figure

    Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning

    No full text
    The paper is aimed at improving the efficiency of signal processing for intermode fiber-optic interferometers. To do so, we propose to use the MUSIC algorithm. It is shown that the use of traditional methods for estimating the number of signal components leads to poor operation of the MUSIC algorithm when applied to intermode interference signals. The possibility of using machine learning to estimate the number of signal components was investigated. The advantage of the proposed signal processing for demodulating the signals of an intermode interferometer over the Fourier transform has been experimentally demonstrated on the examples of simultaneous strain and curvature measurement, as well as pulse-wave sensing. The results can be also applied for processing signals of other optical-fiber sensors and multi-component signals of a different nature, for example, optical coherence tomography and radar signals

    Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning

    No full text
    The paper is aimed at improving the efficiency of signal processing for intermode fiber-optic interferometers. To do so, we propose to use the MUSIC algorithm. It is shown that the use of traditional methods for estimating the number of signal components leads to poor operation of the MUSIC algorithm when applied to intermode interference signals. The possibility of using machine learning to estimate the number of signal components was investigated. The advantage of the proposed signal processing for demodulating the signals of an intermode interferometer over the Fourier transform has been experimentally demonstrated on the examples of simultaneous strain and curvature measurement, as well as pulse-wave sensing. The results can be also applied for processing signals of other optical-fiber sensors and multi-component signals of a different nature, for example, optical coherence tomography and radar signals

    Metasurface for Near-Field Wireless Power Transfer with Reduced Electric Field Leakage

    No full text
    Wireless power transfer is a breakthrough technology which can be used in all aspects of humans daily life. Here, a bi-layer metasurface as a transmitter for near-field wireless power transfer is proposed and studied. The novelty and advantage of the proposed metasurface is the spatial separation of the electric and magnetic near fields. Magnetic fields responsible for power transfer are sufficiently high on top of the metasurface whereas the electric fields are almost completely confined between two layers of the metasurface. These unique properties have been obtained due to the special metasurface design based on two orthogonal layers of resonant wires immersed in high-permittivity background. The theoretical and experimental study reveal the quasi-uniform magnetic field distribution over the metasurface dimensions of 40×4040\times 40 cm2 that makes it suitable for wireless power transfer via resonant magnetic coupling to one or several receivers placed above it. Compared with a conventional planar spiral coilsolution, the specific absorption rate of the proposed metasurface is reduced by 47 times, which enables to greatly increase the allowable transferred power without violating the safety regulation and reducing the efficiency.Peer reviewe
    corecore